The mean number of 3-torsion elements in the class groups and ideal groups of quadratic orders
نویسنده
چکیده
We determine the mean number of 3-torsion elements in the class groups of quadratic orders, where the quadratic orders are ordered by their absolute discriminants. Moreover, for a quadratic order O we distinguish between the two groups: Cl3(O), the group of ideal classes of order 3; and I3(O), the group of ideals of order 3. We determine the mean values of both |Cl3(O)| and |I3(O)|, as O ranges over any family of orders defined by finitely many (or in suitable cases, even infinitely many) local conditions. As a consequence, we prove the surprising fact that the mean value of the difference |Cl3(O)|− |I3(O)| is equal to 1, regardless of whether one averages over the maximal orders in complex quadratic fields or over all orders in such fields or, indeed, over any family of complex quadratic orders defined by local conditions. For any family of real quadratic orders defined by local conditions, we prove similarly that the mean value of the difference |Cl3(O)|− 1 3 |I3(O)| is equal to 1, independent of the family.
منابع مشابه
On the mean number of 2-torsion elements in the class groups, narrow class groups, and ideal groups of cubic orders and fields
Given any family of cubic fields defined by local conditions at finitely many primes, we determine the mean number of 2-torsion elements in the class groups and narrow class groups of these cubic fields, when they are ordered by their absolute discriminants. For an order O in a cubic field, we study the three groups: Cl2(O), the group of ideal classes of O of order 2; Cl2 (O), the group of narr...
متن کاملError Estimates for the Davenport–heilbronn Theorems
We obtain the first known power-saving remainder terms for the theorems of Davenport and Heilbronn on the density of discriminants of cubic fields and the mean number of 3-torsion elements in the class groups of quadratic fields. In addition, we prove analogous error terms for the density of discriminants of quartic fields and the mean number of 2-torsion elements in the class groups of cubic f...
متن کاملResults on Engel Fuzzy Subgroups
In the classical group theory there is an open question: Is every torsion free n-Engel group (for n ≥ 4), nilpotent?. To answer the question, Traustason [11] showed that with some additional conditions all 4-Engel groups are locally nilpotent. Here, we gave some partial answer to this question on Engel fuzzy subgroups. We show that if μ is a normal 4-Engel fuzzy subgroup of ...
متن کاملEffects of L-carnitine and betamethasone on ischemia-reperfusion injuries and sperm parameters following testicular torsion in a rat model
Testicular torsion is a consequence of spermatic cord twisting which causes progressive damage to the structure of the testis and reduces sperm quality and usually results in infertility. In the present study, with the assumption of the protective effects of L-carnitine and betamethasone against ischemia-reperfusion (IR) injuries, their effects on twisted testicles were evaluated and compared. ...
متن کاملExistence and Non-Existence of Torsion in Maximal Arithmetic Fuchsian Groups
In [1], Borel discussed discrete arithmetic groups arising from quaternion algebras over number fields with particular reference to arithmetic Kleinian and arithmetic Fuchsian groups. In these cases, he described, in each commensurability class, a class of groups which contains all maximal groups. Developing results on embedding commutative orders of the defining number field into maximal or Ei...
متن کامل